3 research outputs found

    Transcriptome pathways unique to dehydration tolerant relatives of modern wheat

    Get PDF
    Among abiotic stressors, drought is a major factor responsible for dramatic yield loss in agriculture. In order to reveal differences in global expression profiles of drought tolerant and sensitive wild emmer wheat genotypes, a previously deployed shock-like dehydration process was utilized to compare transcriptomes at two time points in root and leaf tissues using the Affymetrix GeneChip(R) Wheat Genome Array hybridization. The comparison of transcriptomes reveal several unique genes or expression patterns such as differential usage of IP(3)-dependent signal transduction pathways, ethylene- and abscisic acid (ABA)-dependent signaling, and preferential or faster induction of ABA-dependent transcription factors by the tolerant genotype that distinguish contrasting genotypes indicative of distinctive stress response pathways. The data also show that wild emmer wheat is capable of engaging known drought stress responsive mechanisms. The global comparison of transcriptomes in the absence of and after dehydration underlined the gene networks especially in root tissues that may have been lost in the selection processes generating modern bread wheats

    Identifying, cloning and structural analysis of differentially expressed genes upon Puccinia infection of Festuca rubra var. rubra

    No full text
    Differentially expressed genes in response to rust infection (Puccinia sp.) in creeping red fescue (Festuca rubra var. rubra) were identified and quantified using the mRNA differential display technique. The differentially induced genes were identified as homologs of mitogen-activated protein kinase (MAPK) 3 of Arabidopsis thaliana, stem rust resistance protein Rpg1 of barley and Hsp70 of Spinacia oleracea. The change in the steady state expression levels of these genes in response to rust infection was tested by Northern blot analysis and further quantified by real-time PCR. A steady accumulation of transcripts in the course of rust infection was observed. Full-length transcript of a fescue MPK-3 was obtained by RACE PCR. Its corresponding cDNA encodes a protein with a predicted MW of 42.5 kDa which was mapped onto the structural model of homologs MAPK to illustrate the corresponding MAPK signature motifs. This study, for the first time, presents evidence on the rust infection dependent metabolic pathways in creeping red fescue
    corecore